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Direct numerical simulations of a fully developed turbulent channel flow for two
relatively small values of the Reynolds number are used to examine its influence on
various turbulence quantities in the near-wall region. The limiting wall behaviour of
these quantities indicates important increases in the r.m.s. value of the wall pressure
fluctuations and its derivatives, the r.m.s. streamwise vorticity and in the average
energy dissipation rate and the Reynolds shear stress. If the normalization is based on
the wall shear stress and the kinematic viscosity, these changes are shown to be
consistent with an increase in strength — but not the average diameter or average
location — of the quasi-streamwise vortices in the buffer region. Evidence of this
strengthening is provided by the increased sum of the stretching terms for the mean-
square streamwise vorticity. It is also shown that a normalization based on
Kolmogorov velocity and lengthscales, defined at the wall, is more appropriate in the
near-wall region than scaling on the wall shear stress and kinematic viscosity.

1. Introduction

Direct numerical simulations (DNS) of turbulent flows have had a major impact on
near-wall modelling (Mansour, Kim & Moin 1988, 1989; Mansour 1991; Rodi &
Mansour 1993) since they have provided estimates from terms in transport equations
of the quantities that are usually modelled (e.g. the turbulent kinetic energy
k = }4° = §(u*+v*+w?), and its corresponding dissipation rate ¢; u,v,w denote the
velocity fluctuations in the streamwise (x), wall-normal ( y) and spanwise (z) directions,
respectively; note that the quantities u,, u,, U,, X,, X,, X, may be used interchangeably
with v, v, w, x, y, z). Many of these terms, especially those involving spatial derivatives,
have yet to be measured reliably in the wall region. The success of the use of DNS
databases in connection with near-wall modelling can be gauged from the improved
calculation of ¢ in the near-wall region (e.g. So, Zhang & Speziale 19915).

One limitation of the current DNS databases relates to the low Reynolds numbers
at which they have been obtained so that extrapolation of the results to high Reynolds
numbers requires caution. The DNS databases for both the boundary layer (Spalart
1988) and the channel flow (Kim, Moin & Moser 1987; Kim 1989) have been obtained
at sufficiently different values of the Reynolds number to allow some insight into low-
Reynolds-number effects, especially in the near-wall region. This is important since
these databases are being used to model terms in transport equations for k, ¢ and the
Reynolds stresses down to the wall.

In Antonia et al. (1992), the channel flow DNS data were examined in conjunction
with data obtained from experiments in the same flow. Both data sets indicated
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significant low-Reynolds-number effects, comparable to those reported for the
boundary layer by Spalart (1988). In particular, the data in the inner region of the flow
indicated that scaling on wall variables is not appropriate, various wall-normalized
quantities exhibiting different Reynolds number dependences. Several possible causes
for these dependences were investigated. While no evidence was found for any direct
interaction between inner regions on opposite channel walls, it was suggested that
observed effects of &* (= hU, /v, h is the channel half-width, U, is the friction velocity
and v the kinematic viscosity of the fluid; the superscript + denotes normalization by
U, and v) on v’ (the prime denotes an r.m.s. value) and the Reynolds shear stress u*v*
were likely to be associated with the increased stretching of quasi-streamwise vortices
in the wall region. In the present paper, we focus on the near-wall behaviour of several
turbulence quantities (using the DNS channel flow database) primarily to relate more
directly the low-Reynolds-number effects to the near-wall vortical structure. For this
purpose, we consider statistics for the velocity and pressure fluctuations and examine
the constituent terms in the transport equations for the Reynolds stresses and the
mean-square vorticities. Of particular interest are the stretching terms in the vorticity
budgets in that they provide a means of quantifying the vortex stretching, with the
caveat that the equivalence between vorticity and vortices may be tenuous.

After recalling in §3 the asymptotic near-wall form of various turbulence quantities,
we quantify in §4 the Reynolds-number dependence of the wall values of these
quantities. The Reynolds-number dependence of the transport equations for the
Reynolds stresses and the mean square vorticity is considered in §5 and an attempt is
made in §6 to relate this dependence, in particular that of the stretching terms in the
vorticity budget, to that inferred from a simple near-wall model of quasi-streamwise
vortices. Evidence in support of the appropriateness of a Kolmogorov-based scaling
for the near-wall region is presented in §7.

2. DNS details

The database used here was obtained from direct numerical simulations (DNS) of
a fully developed channel flow at two values of A" (180, 400). Details of the
computations can be found in Kim er al. (1987). Uniform meshes were used in the
homogeneous x (= x,) and z (= x,) directions. For 4} >~ 180, Ax* ~ 11 and Az* ~ 4
while for A* = 400, Ax™ ~ 7 and Az* ~ 4. A non-uniform mesh was used in the wall-
normal y (= x,) direction with the minimum spacing of about 0.05 (for both /™) at the
wall and a maximum spacing (Ay* ~ 4.4 for A* = 180 and 5.5 for A* = 400) at the
channel centreline. In the region y* < 10, the Kolmogorov lengthscale 5" is about 1.5
for both A* (see Antonia, Kim & Browne 1991); Ay*™ ~ 1.5 at y* & 10 for both A", and
the computational resolution appears to be therefore quite adequate for this flow
region.

3. Asymptotic near-wall behaviour of various turbulence quantities
Taylor series expansions of velocity and pressure fluctuations about their wall values
have been written by a number of authors (e.g. Townsend 1956; Monin & Yaglom
1975; Hanjalic & Launder 1976; Chapman & Kuhn 1986; Mansour ez al. 1988). The
expansions near y* = 0 for u*, v*, w* and p* are re-written below (up to order y*%)
ut = by +e,y +dy" )

vt = c2y+2+d2y+3, )
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wh= b,y + eyt +dyy”, 3)
pr=a,+b,y" +c, vt d, y*, 4)

where the coefficients are functions of x*, z* and ¢*. The continuity equation and the
momentum equations allow a few relations between these coefficients to be written (e.g.
Mansour et al. 1988)

2¢, = —(by ,+ by y), (5)
a,, =2c, (6)
a, ; = 2c,, (7

b, = 2c,, 8

where b, , = 0b,/0x", b, , = 0b,/0z", etc. Note that relations (6) and (7) reflect the
equalities which exist at the wall between the instantaneous pressure gradients (in
either x* or z*) and the y*-derivatives of either w} or w}, namely

_p_%w, Op_ 0w,
ox dy’ 0z oy’
Expressions for several turbulence quantities can be derived from (1)4). For
example, the components of the vorticity fluctuation vector are given by (to order y?)

W = Wh— Ty = by+20, )" +(3dy—cy ) ¥ ©)
w; = uy+3—w’+1 = (b1,3—b3,1)y+, (10)
a):EUTl—ujrz=—b1—2c1y++(c2’1—3d1)y+2. 1D

There is no y*' term in (10) since (¢;,3—¢5 ) 1s zero as a result of conditions (6) and
(7). The product u*v* is given by (to order »®)

utvt = b, c,y*. (12)

4. Effect of Reynolds numbers on velocity, pressure and vorticity statistics

Distributions of r.m.s. values of the three velocity fluctuations and of the Reynolds
shear stress are shown in figure 1, together with the distributions of ¢’*, where ¢’ = qzm.
Root mean square vorticity fluctuations are shown in figure 2 while the r.m.s. values
of p and its spatial derivatives are given in figures 3 and 4. Although all the data in one
half of the channel are plotted in these figures, the logarithmic scale for y* highlights
the near-wall behaviour of the plotted quantities. The shapes of the curves at small
values of y* suggest a limiting wall behaviour which is consistent with the dominance
of the first terms on the right-hand sides of (1) to (4) and (9) to (12). In every case, the
curves exhibit a clear tendency towards constancy as y* —0.

The r.m.s. values of the coefficients of the first terms in (1) to (4) and (9) to (11) are
shown in table 1 (the subscript w will be used to denote wall values). Also shown are
the average values of the coefficient in (12) as well as those of the coefficients of the
first terms in the expansions for ¢’ and ¢. Not all the estimates shown in the table are
independent. For example, («”/y*),, and ., should be identical as should those of
(w"/y"),, and w,. . The differences reflect the numerical uncertainties of these estimates.
There are two sources of errors, numerical (truncation errors) and statistical (limited
sample size). The former are always difficult to estimate since the maximum available
grid resolution is usually used for final computations. The adequacy of the resolution
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FIiGURE 1. Distributions of r.m.s. turbulence intensities and Reynolds shear stress.
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FIGURE 2. Distributions of r.m.s. vorticity and its components.

is determined by comparing the computed statistics with those obtained with a coarser
grid and by examining the computed spectra. Errors associated with the limited sample
size can be estimated by examining computed statistics obtained from different
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FIGURE 4. Root mean square pressure derivative distributions.

Percentage

Quantity h =180 ht =400 increase
W /¥, 0.356 0.395 11
@ /"), 8.5x107 1.1x 1072 29
W /v, 0.190 0.245 29
@[y 0.406 0.468 15
(—uv )y,  7.0x10™ 9.5x10 36
€, 0.164 0.219 34
o, 1.455 2.061 2
(Op* /ox™),, 4.8%107 6.4 x 102 33
(Op*/oy*). 1.7 x 102 2.3x102 35
@p*/oz*), 6.9 x 1072 9.1 x 102 32

- 0.186 0.245 32
(ws';/y*)w 2.7x107? 2.9%1072 7
! 0.356 0.396 11

2w
TaBLE 1. Effect of Reynolds number on the r.m.s. values of various turbulence statistics
at the wall
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FIGURE 5(a, b). For caption see facing page.

numbers of computational fields; for any of the quantities shown in table 1, the limited
sample size error is comfortably smaller than the percentage increases (also given in the
table) between the two Reynolds numbers. The estimated uncertainty due to the
sample size in wxw and wzw, for example, is about 2 %.

The increase in (' ")y, (= b)) with A* 1s smaller than that in either (v /™),
(=¢}) or W' /¥, (=B). The increase in (¢ /y*),, (= b2+b2 ", which is dominated
by the contrlbutlon from u*, is comparable to that in (u */y"),,. The increase in
(—uv™/y™"),, is slightly larger than that for either (v /y* "), OF (W / )y

Other quantltles which show important Reynolds number variations include w
(figure 2), p’ (figure 3) and all three r.m.s. pressure derivatives (figure 4). In general
the three r.m.s. pressure derivatives are roughly of the same order of magmtude and
their percentage increases with A* is appr0x1mately the same as that for , . Kim (1989)
showed that the dominant source term in the Poisson equation for pressure was related
to streamwise vortices in the buffer layer (this is discussed in §6). It is therefore
reasonable that the r.m.s. pressure and pressure derivatives are increased by roughly
the same order of magnitude as the streamwise vorticity in the buffer layer.

The percentage increase in ¢* (figure Sd) is comparable to that for —u*vt/y* (ﬁgure
1) and is virtually identical to that of &’ (figure 2). The latter result is not surprising in
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FIGURE 5. Budgets of the Reynolds normal stresses and of their sum (i.¢, the turbulent energy). (The
numbers refer to the terms in equation (13).) (a) u*'; (b) v*"; (c) w*'; (d) ¢*". h*: ——, 180; ——, 400.

view of the near equahty between ¢* and w*' in the present flow (cf. Antonia et al. 1991
for details). Note that, in the buffer region, w, is the only vorticity component to be
51gn1ﬁcantly affected by #*. Note also that (ap+ /oy*Y is approximately twice as large as
v / y*, in reasonable agreement with the Neumann boundary condition at the wall,
i.e. equation (8). It should further be noted that the Reynolds-number variations
exhibited by table 1 are not unique to this flow; 51m11ar variations may be observed in
Spalart’s (1988) boundary-layer data (e.g. p° increases by about 42% between
R, =300 and R, = 1410, where R, is based on the free-stream velocity and momentum
thlckness of the layer).

(wy " /y*),, is practically unchanged reflecting the apparent 1nsen51t1v1ty of w; on the
Reynolds number. (The ratio w; */y* is plotted in figure 2 instead of w,, whlch goes to
zero as y*—0, cf. equation (10) ) It is also of interest to note that several quantities,
which may be expressed as ratios of those shown in table 1, are essentially unaffected
by the i increase in A*. For example, the limiting wall value of the structure parameter
(= u*v+ /y*q*™) is about 43 x 1074, The limiting wall value of the turbulent timescale
(¢%/y*'e") is equal to 1. It follows that (—u*v* U /dy*)/(¥* €*), which is the limiting
wall value of the ratio of turbulent energy production to turbulent energy dissipation
rate, is also unchanged.
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5. Budgets of mean-square velocity and vorticity fluctuations

It is of interest to examine how the Reynolds-number dependence of the mean-
square values of the velocity and vorticity fluctuations is apportioned among the
various terms in the transport equations for these quantities.

The equations for the Reynolds stresses u; 4 are given by

+ T+ +, T+ + ., + T + .+ 1 Y
= wy Uy o+ ug U ) — @ uj ) o — (g pls+ i p75) o (U 5) g =205 6 U5 g,
h v h — —— - v =

1 2 3 4 5

0
(13)

where terms 1, 2, 3 represent the production, turbulent diffusion or turbulent transport,
and velocity-pressure gradient correlation terms, respectively, while terms 4 and 5 are
the viscous diffusion and turbulent dissipation rate terms, respectively. The
distributions of the above terms are shown in figures 5(a) (u*), 5(b) @*"), 5(c) (W*);
5(d) (¢" = u*’ +v* +w") and figure 6 (1*v*); the numbers in the figures correspond
to the term numbers in (13). Although the distributions at A" = 180 have already been
presented and discussed in Mansour et al. (1988), the emphasis here is on the Reynolds-
number dependence of the various terms which make up the Reynolds stress budgets.

In the case of u*’, the major effect of h* outside the sublayer is confined to the
production and velocity—pressure gradient terms. Outside the sublayer, the velocity—
pressure gradient term is the dominant production term in the v** and w** budgets.
It is significantly affected by the Reynolds number, possibly reflecting the effect of
h* on the r.m.s. pressure derivatives (figure 4). The increase in the velocity—pressure
gradient terms is matched by an increase in the dissipation rate (and a somewhat
smaller increase in the turbulent diffusion term). The difference between the A*
dependence of v** and wt’ relative to that of u*’ in the region y* = 10 seems consistent
with the larger effect of 4" on v** (and w*’) than on u*" for this flow region (Antonia

et al. 1992). The budget of g™ * (figure 5d) is essentially identical to that of u*, reflecting

the major contribution of u*" to the total energy (note that exaggerated scales are used
in figures 5(b) and 5(c), relative to those in figures 5(a) or 5(d)). Figures 5(a) and 5(d)
stress the relatively minor role played by the velocity—pressure gradient correlation in
the " and ¢* budgets.

The budget of the Reynolds shear stress (figure 6) contrasts significantly with that of

the normal stresses. Although the major source term is, as in the case of u*", provided
by the production term (note that negative values represent a gain for the u*v™ budget),
this term is now balanced by the velocity—pressure gradient and the turbulent diffusion
terms. Outside the sublayer, the viscous diffusion and the dissipation rate terms are
negligible (Mansour et al. 1988, noted that the viscosity plays a minor role in the
dynamics of u"v* because the sum of the two viscous terms is small throughout the
channel), a trend which is also seen in the »*v" budget presented by Spalart (1988) for
the boundary layer. The effect of the Reynolds number is significant both on the major
source and sink terms.

Transport equations for o] w; have been written by several authors (e.g. Corrsin
1953; Tennekes & Lumley 1972). In the present form, the advection term is zero and
the equations are given by

— o O, — Y0 o)), et e u, ot o U, +or U, QF +Xof of) L — o 0f
L”"f{) 'QJJ,\ Z(uyfl‘)z w%)’a,‘_*'wl w; uw}:{-wl ‘\j’y Um,[*'w@ 31,.79]; C"‘z(wbwz),nj\ Wy, Wy 4,
1 2 3 4 5 6 7

=0. (14)

Tennekes & Lumley (1972) have interpreted | and 2 as the gradient production and
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FIGURE 6. Budget of the Reynolds shear stress #™v*. (The numbers refer to the terms
in equation (13).) A*: ——, 180; ——, 400.

transport by the velocity fluctuations, respectively. Terms 3, 4, 5 are stretching (or
compression) terms, the first of these representing turbulent stretching of the vorticity
fluctuations, when i = j; they represent the reorientation of vortex lines when i * j.
Terms 6 and 7 are the viscous diffusion and dissipation terms, analogous to terms 4 and
5 in (13). A measure of the numerical uncertainty in comput1ng the bu _gets was
inferred from the imbalance in the budget. For example, in the case of the w} and v*
budgets, the imbalance is less than 1% of the wall value of the d1ss1pat1on (term 7)
throughout the channel.

Term 1 contributes only to the budget (figure 7¢). While term 3 i1s the most
important source term in the outer part of the channel, its contribution in the inner
region is somewhat overshadowed by that of the other two stretching terms in the case

of w} (figure 7a) and wf (figure 7b) (terms 4 and 5). In the buffer region (figure 8), term 4,
or stretching of vorticity fluctuations by the mean velocity gradient is the dominant
source term while term 5, which Tennekes & Lumley (1972) describe as a mixed
production term, represents a significant sink term. Close to the wall, terms 6 and 7
balance each other (as in the case of terms 4 and 5 in figure 5) and are appreciably

affected by the Reynolds number Except for the absence of term 4 in the w; * budget,

the budget of w* (= o +w +w ") (figure 7d) resembles that of a)+ (figure 7¢)
more than that of either v} or wy (the scale in figure 7(b) is exaggerated)

As noted in §4, the equality ¢* = ™" is closely satisfied in the present flow. There is
also a strong similarity between the present w* budgets and the budgets of ¢*, obtained
in the same flow by Mansour ez al. (1988) [h* = 180] and Rodi & Mansour (1993)
[h* = 400]. In particular the relative shapes and magnitudes of the turbulent
production (2u; . uf ,, uy ,,) and dissipation (2u] ., 4] ,,,) terms in the ¢" budget are
virtually identical to those for terms 3 and 7 in figure 7(d). The increase, with respect
to h*, of the peak dissipation value (at y* ~ 5) is about 30 % in each case. Similarly,
the increases in the local peak values for the turbulent production (¢ budget) and
turbulent stretching (o*° budget) terms are identical: 48% at y* ~ 3 and 26% at
yT ~ 11. It would appear that the Reynolds number dependence of the w** budget
mirrors almost perfectly that of the €* budget.

When only the sum of the stretching terms and the s sum of the viscous terms are
considered (they are not plotted here) the budget of w*" simply reduces to a balance
between production (stretching) and the sum of viscous diffusion and dissipation
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terms, the turbulent transport being virtually negligible. In this sense, the budget of "
differs in a significant manner from that of g* where the magnitude of the turbulent
transport is comparable to the production and dissipation terms.

6. Reynolds-number dependence through increased vortex stretching

The Reynolds-number dependence of the various quantities considered in §§4 and 5
(see also Antonia et al. 1992) can be explained, at least qualitatively, in terms of
increased stretching (when normalized by wall variables) of the vortices in the wall
region, or, perhaps equivalently, in terms of an active motion which intensifies as A*
increases. This equivalence seems plausible if the vortical structures in the inner region
of the flow play a dominant role in transferring momentum and heat in this flow
domain. The active motion (Townsend 1961; Bradshaw 1967) should be the major
contributor to w*v™ in this region. The inactive motion can make important
contributions to the Reynolds normal stresses but is unlikely to contribute to the
Reynolds shear stress in the inner region.

In the buffer region, Robinson (19914) showed that there is a close association
between quasi-streamwise vortices (which occur singly with much higher probability
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FiGURE 7. Budgets of mean square vorticity components and their sum. (The numbers refer to the
terms in equation (14).) (@) o} ; (b) @5 (€) @} ; (d) &5 k"1 ——, 180; ——, 400.

than counter-rotating pairs) and both outward ejections of low-speed fluid and
wallward sweeps of high-speed fluid. Since these events dominate the contribution to
utv*, the above association implies a close link between the active motion and the
quasi-streamwise vortices. Relatively direct evidence that the quasi-streamwise vortices
in the buffer region are increasingly stretched as 4' increases is provided by the
stretching terms in figure 7. The terms representing stretching by the turbulent
fluctuations (term 3) are replotted using a bigger scale in figure 8 (@). The sum of all the
stretching terms (3, 4 and 5) is shown in figure 8 (b). Figure 8(a) confirms the significant
increase (= 37%) with 4" in the turbulent stretching of the »} fluctuations at y* ~ 25
(near the most probable location of the streamwise vortex centres). At this location,
there is a negligible increase in the turbulent stretching of w;. For w], the turbulent
stretching terms exhibits local peaks at y* ~ 3 and y* ~ 11, the peak at y* ~ 3 having
the slightly larger magnitude. The percentage increases with 4™ are about 51% at
y* ~ 3 and 25% at y* = 11. It should be noted, however, that the peak values of terms
4 and 5 are larger (for each vorticity component) than the peak value of term 3. Term
4 has the largest peak in the case of w} and w; while term 5 is largest for ;. It seems
therefore appropriate to turn our attention to the effect of #* on the sum of the three
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FIGURE 8. Turbulent and total stretching terms in the transport equations for the three vorticity
components. (@) Turbulent stretching (term 3 in equation (14)); () total stretching (sum of terms 3,

4 and 5 in equation (14)). A*: ——, 180; ——, 400.
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FiGURE 9. Simplified view of a single quasi-streamwise vortex near the wall.
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stretchlng terms (figure 8 ). The major increase (~ 41 %) occurs in w}, the increases
in w} and w; being equal to about 16 % and 31 %, respectively. The locatlons at which
these increases occur (y* ~ 11 for w} and w;, y* =~ 3 for w}) correspond approximately
to those for the peak values of the largest stretching terms. It seems reasonable to
attribute the increases in the sum of the stretching terms for w} and w; mainly to an
increased stretching of the quasi-streamwise vortices in the buffer region. Conjecturally,
the increase in the sum of the stretching terms for «} may be attributed to the
strengthening of the splatting motion induced by the quasi-streamwise vortices. This
motion (e.g. Moin & Kim 1982; Chapman & Kuhn 1986) can be described as wallward
moving fluid which, on encountering the wall, is deflected in both positive and negative
z-directions. This results in ow/0z being large and positive. One would expect this
motion to result in fairly large and positive 0u/dy (i.e. negative w,; the boundary-layer
measurements of Balint, Wallace & Vukoslavcevic (1991) indicate that intense spanwise
vorticity stretching dominates over spanwise vorticity compression in the near-wall
region) at the wall. Consequently, the correlations w?(0w/0z) (the main contributor to
term 3) and w,(0w/0z) 2, (term 5) should be positive and large close to the wall (it seems
plausible that this occurs near the edge of the sublayer, as indicated by figure 8).

The increased stretching of the quasi-streamwise vortices would be consistent with
the major increase in the Reynolds shear stress and the smaller increases in the
Reynolds normal stresses (which received contributions from the inactive motion). It
should also be consistent with the significant increase in the r.m.s. pressure and
pressure derivative values (figures 3 and 4) as discussed in §4. Strong vortices in
unsteady viscous flow are also expected to have low-pressure cores, accounting for the
strong correspondence between low-pressure regions and quasi-streamwise vortices
(Robinson 19915). The joint probability density functions between p* and ] presented
by Kim (1989) at y* = 30 and 100 in a fully developed turbulent channel flow indicated
that large w} fluctuations are likely to be associated with large negative p* fluctuations
although the reverse is not necessarily true.

Kim et al. (1987) explained their distribution of w) (at A" = 180) in terms of a
(simplified) flow module comprising single streamwise Oseen like vortices (see figure 9)
The average position y! of the vortex centre, where o, exhibits a local maximum w/,
was assumed to be equal to 20 while the average vortex diameter d" was taken to be
equal to 15 (w has a local minimum at y} ~ 5, where the magnitude of w has a local
maximum). With such a model, it can be shown that (Kim et al. 1987)

¥
4 +

A N (15)
a);;w (y ¢ )
where w 1s the value of "at y* = 0. Although the data in figure 2 indicate that the
peak in a) is fairly broad (and not accurately defined), the selected values of y} and
yT seem reasonable The data in figure 2 indicate values of 0.74 (h* = 180) and 0.71
(h* = 400) for the left-hand side of (15); the ratios of the left-hand and right-hand sides
of (15) are 1.11 (hJr = 180) and 1.06 (A" = 400). Spalart’s (1988) boundary layer
distributions of w} prov1de reasonable support for the choices of y! (~ 15) and y;
(~ 4); the ratio a)'+/ w, (0.72, 0.67 and 0.64 for R, = 300, 670 and 1410, respectively;
the correspondlng values of 8* where § is the boundary-layer thickness, are 161, 315
and 651) is also in reasonable agreement with (15).
It is relevant to comment on the near-wall behaviour of 0w/dy (see figure 9) which
is caused by the presence of the quasi-streamwise vortices. For the clockwise vortex
shown in figure 9, the negative dw/dy at the wall should be associated with negative
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Fi1GURE 11. Two-point correlation coefficients of the three vorticity components in the
y*-direction. The reference location is at y* = 15. A*: ——, 180; ——, 400.

values of 0v/dz and hence positive values for the product (dv/0z) (Ow/dy). Similarly,
counterclockwise vortices would induce positive values of (dw/dy), (0v/0z) and their
product. The correlation (0v/0z) (Ow/0y) should therefore be positive close to the wall;
figure 10 shows that there is a positive maximum near y™ = 3. The magnitude of this
peak is, however, small compared with that of the negative maximum at y* ~ 30 (i.e.
near the average location of the vortex centre). As noted earlier, the product
(Ov/0z) (Ow/dy) i1s the major nonlinear source term in Poisson’s equation for the
pressure fluctuation (Kim 1989). It seems therefore reasonable to expect the peak value
of p’ to occur near y* = 30. For the present data, p;,,, occurs at y* ~ 32 (figure 3) for
the two values of A*. For Spalart’s data, p),,, occurs at y* ~ 24, independently of 7.

The above considerations suggest that the dependence of ), on A" may be explained
in terms of an increase in strength of the vortex, without any s1gn1ﬁcant change to its
size. Figure 11 shows that the correlation coefficient

Puyu, = 02 ) 0(y+Ap)/ (V) w(y+ Ay)
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at y* =15 is virtually unaffected by A*. The rather large negative value of the
coefficient near the wall (at Ay* = —15) reflects the presence of vorticity of opposite
sign to that of the overlying vortex which results from the no-slip condition at the wall
(figure 9). The correlatlon coefficient p,, ., at y* = 15 (figure 11) is unaffected by ™.
This, and the w), " distributions in figure 2, suggests that both the scale and the strength
of w, are unaffected by #*. For completeness, p, . is also included in figure 11. As in
the case of w, and w,, the lengthscale of w, is the same at the two values of A*. While
the lengthscales assomated with v, and w, are roughly comparable, the scale associated
with o, is appreciably larger. This appears to be consistent with the continuity
requirement (namely the solenoidality of vorticity) and the expectation (at least for
homogeneous turbulence) that ‘longitudinal’ scales should be larger than ‘lateral’
scales. The distance between the local minima of p, , may be loosely identified with
an average vortex diameter. A value of 4" is consistent with that previously assumed
with the model of figure 10. Further support for this magnitude is provided by two-
point v-correlations in the z-direction. The distribution of p,,(Az*), calculated at
y* = 15 (figure 12) exhibits a clear minimum at Az* ~ 30 at both A*, confirming that
the average streamwise vortex diameter scales on U, and v.

Robinson (1990, 19915) computed several statistics for the locations, size and
strength of streamwise and spanwise vortices using the DNS boundary-layer database
of Spalart (1988). His results point to a clustering of quasi-streamwise vortices near the
wall. The most probable values for the location and diameter of these vortices are very
similar to the present suggestions. Robinson also computed the circulation I (by
integrating w, over the vortex area) for quasi-streamwise vortices which were identified
visually from instantaneous sectional streamlines in the (y,z)-plane and obtained a
peak value for I'* of about 63. I'* can be estimated from the relation I'* = w? Gnd").
For the present data, I'" is about 104 at A* = 180 and about 114 at A" = 400. For
Spalart s data, I'" increases from 68 (6* = 160) to 74 (&* = 650). The relatlvely small
increase in I"™* for Spalart’s data reflects the small increase (with ¢*) of w, or wx (see
figure 13). Jimenez (1993) estimated a value of I of about 150 (for “the present
database at A" = 180) for the most intense vortices (4" was about 15). As noted by
Robinson and Jimenez, there is unavoidable arbitrariness in identifying vortices and
this would partly account for the spread in the above values of I'". Because of the
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difficulty in unambiguously detecting vortices, we did not attempt to compute statistics
of vortices from the channel flow databases, restricting ourselves to conventional
vorticity statistics. Although the relationship between vorticity and vortices is not
clearcut, there seems little doubt, however, that I'* increases with A% or 6" at least in
the Reynolds number range for which the DNS data have been obtained.

It is appropriate here to comment, albeit in a speculative manner, on whether the
Reynolds number variation observed for the present data will continue as A* or §* are
further increased. Figure 13 shows the values of v/, , w;;, and p;, for the present data
and Spalart’s boundary-layer data. The use of wall values emphasizes the Reynolds-
number dependence since the rate of increase for the quantities examined is, in general,
largest at the wall. The trend of the boundary-layer data in figure 13 tends to suggest
that the rate of increase weakens as 4" increases and that the three quantities will
asymptote to constant values when &*. It is reasonable to expect that a similar trend
would apply for the channel data. For sufficiently large values of §* and 4* (probably
of order 1000), available measurements in the logarithmic and outer regions of both
flows are consistent with the concept of Reynolds-number similarity. Assuming that
there is non-negligible interaction between the inner and outer regions of these flows,
the near-wall Reynolds number dependence should eventually disappear when ¢* and
h* are sufficiently large, i.e. scaling on wall variables should ultimately apply in the
near-wall region. A more appropriate scaling for the near-wall region when 4" is small
1s considered in the following section.

7. Scaling on wall-Kolmogorov variables

Normalization on standard wall variables (U, and v) was used in previous sections.
The data clearly indicate that this scaling — which is commonly adopted in the
literature — is inappropriate in the near-wall region, at least in the context of the low
Reynolds numbers at which the DNS databases were obtained. (Note that one need to
discount the collapse of U* in the sublayer since U, is derived from the value of dU/dy
at the wall; correspondingly, the usual definition of the sublayer, i.e. y* < 5 may be
inappropriate in the context of turbulence quantities.) Tennekes & Lumley (1972,
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Ficure 14. Root mean square turbulence intensities and Reynolds shear stress in the wall region.
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p. 159) noted that, near the wall, /* ~ xy™ and 5* ~ (ky*)/* (/ is an integral scale of the
turbulence, 5 is the Kolmogorov microscale and « is the von Karmdn constant) and
argued that turbulence cannot sustain itself when / becomes smaller than #. This
suggests that ¢,, the turbulent energy dissipation rate at the wall, may be a likely
candidate for the normalization of turbulence quantities near the wall. Accordingly,
wall-defined Kolmogorov length and velocity scales

V3 1/4
Nw =\ »
€w
—_ 1/4
wa - (Vew) / s

were selected as the normalizing scales (the values of ¢, are shown in table 1). An
asterisk denotes normalization by #,,and U,,,. Root mean square turbulence intensities
and the Reynolds shear stress are plotted in figure 14 using both Kolmogorov scales
and standard (U, and ») scales. The Kolmogorov normalization is clearly superior over
a region extending from the wall to the location of the peak Reynolds stress. The
collapse is nearly perfect in the case of v'* and u*v*. One would expect the near-wall
region to be disturbed by motions which arise in the outer region, e.g. the inactive
motion. This is reflected in the presentation of figure 15 which may be directly
compared with figure 1. The changes in the wall values of u'*/y*, w'*/y* are equal to
about —4% and 12% which are significantly smaller than the percentage increases

inferred from figure 1 (cf. table 1). For the wall values of v'*/y** and u*v*/y*’, the
increases are about 7% and —4 %, which are negligible compared with those in table
1. Note that the near-wall distributions of ¢’*/y* are coincident, the wall value of
q’*/y* being, by virtue of the normalization, equal to 1. Global quantities, like the
pressure fluctuation, are unlikely to collapse — near the wall — when normalized by
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Kolmogorov variables. Indeed this is what we observe (the figure is not shown); the
increase in the wall value of p’* is however only 13 %, compared with 42 % (table 1)
in the case of p”".

We have also verified that, for the near-wall region, the Kolmogorov-normalized
stretching terms collapse better than indicated in figure 8. The percentage changes for
w¥ and o* (figure 16) are smaller than those inferred from figure 2 (cf table 1).

x

However, the change in w,*/y* is —15% compared with +7% for a)’; /yt. It would
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appear that U, and v are more appropriate scales for ). The w, correlations in figures
11 and 12 and the commonly reported average wall streak spacing of about 100v/U,
for a wide range of Reynolds numbers would seem to support this claim.

As discussed in the previous section, one would expect ¢/, to asymptote to a constant
value for sufficiently large #*. When this occurs, normalization by Kolmogorov scales
becomes equivalent to the standard normalization since U, ~ U,,, (this follows from

Un,/v= e;_m—wonstant, since U, 7,/v s, by definition, equal to 1).

8. Conclusions and discussion

The present results, obtained from direct numerical simulations of a fully developed
turbulent channel flow at two values of the Reynolds number, emphasize the significant
low-Reynolds-number effects that exist in the near-wall region. In particular, important
increases (with Reynolds number) occur for the r.m.s. streamwise vorticity and
pressure fluctuations as well as the Reynolds shear stress and average turbulent energy
dissipation rate. These increases are consistent with the strengthening of both quasi-
streamwise and spanwise vortices in the wall region. In view of the relatively close
association of these vortices with the events that make dominant contributions to the
Reynolds shear stress, the intensification of these vortices is equivalent to a
strengthening of the active motion. The vortex statistics obtained by Robinson (1990,
1991b) and the present data indicate that the quasi-streamwise vortices are likely to be
more important in the near-wall region than the spanwise vortices, the influence
exerted by the latter tending to increase further away from the wall. The simple model
in figure 9 is consistent with quasi-streamwise vortices which become more intense but
whose average location y; and diameter 4" remain approximately unchanged as the
Reynolds number increases. Support for a constant value of d* is provided by two-
point w, correlations in the y-direction and two-point v correlations in the z-direction.

Some insight into the strengthening of the quasi-streamwise vortices was provided
by the budgets of the mean-square vorticity fluctuations. These budgets indicate that,
although the stretching of vorticity fluctuations by the turbulent velocity fluctuations
is most important in the outer region (where it is approximately balanced by the
dissipation rate), its influence in the wall region may be overshadowed by that of the
other two stretching terms, which bring into play either the mean velocity gradient
0U/dy or the mean spanwise vorticity £2,. When the sum of the three stretching ; terms

is considered, the largest increase with respect to A* occurs, in the case of wf, at
y" =~ yZ, where y! is the average location of the vortex centre. There is a significant
increase in the sum of the stretching terms in the " budget but, arguably, this increase
is associated with the more vigorous splatting motion induced by the quasi-streamwise
vortices.

In the near-wall region, most of the turbulence quantities scale better, though not
perfectly, on Kolmogorov velocity scales and lengthscales (based on ¢,, and v) than on
the standard variables (U, and v). This is not unexpected given that, in this region, the
mean flow field is dominated by the viscous stress while turbulence cannot sustain itself
when the lengthscales become smaller than the Kolmogorov lengthscale. At sufficiently
large h*, perhaps of the order of 1000, normalization by U, and » should become
equivalent to normalization by Kolmogorov wall scales.

R.A.A. acknowledges the support of the Australian Research Council.
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